skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kang, Mijeong"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Redox, a native modality in biology involving the flow of electrons, energy, and information, is used for energy‐harvesting, biosynthesis, immune‐defense, and signaling. Because electrons (in contrast to protons) are not soluble in the medium, electron‐flow through the redox modality occurs through redox reactions that are sometimes organized into pathways and networks (e.g., redox interactomes). Redox is also accessible to electrochemistry, which enables electrodes to receive and transmit electrons to exchange energy and information with biology. In this Perspective, efforts to develop electrochemistry as a tool for redox‐based bio‐information processing: to interconvert redox‐based molecular attributes into interpretable electronic signals, are described. Using a series of Case Studies, how the information‐content of the measurements can be enriched using: diffusible mediators; tuned electrical input sequences; and cross‐modal measurements (e.g., electrical plus spectral), is shown. Also, theory‐guided feature engineering approaches to compress the information in the electronic signals into quantitative metrics (i.e., features) that can serve as correlating variables for pattern recognition by data‐driven analysis are described. Finally, how redox provides a modality for electrogenetic actuation is illustrated. It is suggested that electrochemistry's capabilities to provide real‐time, low‐cost, and high‐content data in an electronic format allow the feedback‐control needed for autonomous learning and deployable sensing/actuation. 
    more » « less
    Free, publicly-accessible full text available August 22, 2026
  2. Nanostructured materials offer the potential to drive future developments and applications of electrochemical devices, but are underutilized because their nanoscale cavities can impose mass transfer limitations that constrain electrochemical signal generation. Here, we report a new signal-generating mechanism that employs a molecular redox capacitor to enable nanostructured electrodes to amplify electrochemical signals even without an enhanced reactant mass transfer. The surface-tethered molecular redox capacitor engages diffusible reactants and products in redox-cycling reactions with the electrode. Such redox-cycling reactions are facilitated by the nanostructure that increases the probabilities of both reactant–electrode and product–redox-capacitor encounters ( i.e. , the nanoconfinement effect), resulting in substantial signal amplification. Using redox-capacitor-tethered Au nanopillar electrodes, we demonstrate improved sensitivity for measuring pyocyanin (bacterial metabolite). This study paves a new way of using nanostructured materials in electrochemical applications by engineering the reaction pathway within the nanoscale cavities of the materials. 
    more » « less